Chemical Technology
Article | July 20, 2022
The chemical business is intricate, with numerous sub-sectors dealing with various challenges. Thus, there are some differences in the sector's main areas of digitalization. For instance, while specialty chemicals with smaller batches but larger profit margins are concerned with improving quality, large factories are concentrated on accelerating throughput speed.
To be able to react to quick and repeated changes in demand, supply, and working circumstances, however, every plant must optimize output, reduce waste, improve safety and sustainability, and become more nimble. Therefore, the Industrial Internet of Things (IIoT), artificial intelligence (AI), and cloud computing are expected to be the three most popular applications for digital transformation during the coming two years.
Key Trends
Production Optimization
The first and most valuable use cases of digitalization in chemical plants center on production optimization through improved equipment performance, process automation, remote and predictive monitoring, and simplified maintenance.
Chemical factories, which often provide basic chemicals for use as end products in other sectors, have a special responsibility to maintain consistently high product quality. However, doing so can be challenging given the significant variations in raw material supply and quality. In addition, as process engineers can change the mix on the fly in reaction to fluctuations in quality, feedstock, or ambient temperatures, better data and analytics enable finer and more frequent adjustments.
Lowering Waste
The main advantage of digitally transformed plants so far has been cost reduction. The price volatility of raw materials is a problem for the chemical production sector because customers naturally want constant low prices. Minimizing waste is critical since facilities must contend with rising energy costs.
Analytics tools that monitor fluctuating raw material prices aid factories in negotiating the best deals with suppliers and preparing in advance for price spikes. The risk of oversupply is reduced since plants can prepare the proper quantities of various products thanks to more precise demand predictions.
Sustainability, Compliance, and Safety
The chemical industry is heavily regulated as a result of the quantity of hazardous chemicals and the number of end-use industries that rely on it. Businesses are adopting digital transformation to boost safety awareness, reduce emissions and dangerous flare incidents, and guarantee a transparent and accurate audit trail.
Plants that quickly adopt digital solutions for remote monitoring, supply chain visibility, waste reduction, production optimization, raising their safety profile, and opening up new opportunities will profit from higher profits and increased revenue, whereas those that hesitate for too long risk failing in the long run.
Read More
Chemical Technology
Article | July 14, 2022
SEE THE END section of this blog post for a dystopian version of our environmental future. In a follow-up post – which I will publish on Thursday, 1 July – I will offer some suggestions about how we can avoid an outcome that nobody of course wants.Both posts are meant to be provocative, challenging and controversial because only through debate, and sometimes outright argument, will we get to the answers.
If you disagree after either or both posts have been published, great, that would be good. In fact, I would love to hear from you whatever your views at john.richardson@icis.com. The petrochemicals industry can do this; we can fix this if we create the right forums for ideas and then solutions.
Let me provide the background first. Let me start by examining developments in the refinery industry and the implications for petrochemicals as important background. Then I will look at a sample of ICIS petrochemicals demand growth forecasts for 2020-2040. I will conclude by providing the bleakest of bleak outcomes for the world in 2025
Read More
Chemical Management
Article | July 8, 2022
IN 2015, a global agreement was reached that 8m tonnes a year of plastic waste entering the oceans was unacceptable, according to this September 2020 article in The Conversation. This was the amount of plastic that was estimated to have ended up in the oceans in 2010.
“Several international platforms emerged to address the crisis, including Our Ocean, the UN Sustainable Development Goals and the G7 Ocean Plastic Charter, among others,” continued the article.
But in 2020, an estimated 24m-34m tonnes of plastic waste was forecast to enter our lakes, rivers and oceans. This could reach as much as 90m tonnes in 2030 if the current trajectory continued, said The Conversation.
This is the type of information out there, free to view on the internet and accessible via a very quick Google search, representing a major challenges for our industry. I cannot of course verify the numbers. But they are out there.
Also out there is a May 2019 article by the World Economic Forum (WEF), which provided a good summary of research into what experts believed was the scale of the waste problem in the developing world.
Read More
Chemical Technology
Article | May 10, 2021
When an oilfield’s reservoir pressure is depleted during primary recovery, additional oil can be recovered by recycling the produced water and injecting it back into the reservoir. Water management is critical for such water and water-alternating-gas (WAG) floods. In its Permian basin operations, Occidental recovers, recycles, and re-injects large volumes of water for its enhanced oil recovery (EOR) operations. With real-time monitoring of oil in water (OiW) delivering reliable and continuous data, Occidental identified a way to optimize the recovery process and is working with NOV to expand the use of OiW monitoring equipment.
Read More