Chemical Technology
Article | August 2, 2022
An enzyme-mimicking catalyst opens a new route to important organic molecules such as glycolic acid and amino acids from pyruvate, report researchers in Japan. Moreover, the new catalyst is cheaper, more stable, safer and more environmentally friendly than conventional metal catalysts used in industry, they note, adding that it also displays the high enantioselectivity required by the pharmaceutical industry.
“On top of these advantages, our newly developed organic catalyst system also promotes reactions using pyruvate that aren’t easily achievable using metal catalysts,” says Santanu Mondal, a PhD candidate in the chemistry and chemical bioengineering unit at Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan, and lead author of a study recently published in Organic Letters.
“Organic catalysts, in particular, are set to revolutionize the industry and make chemistry more sustainable,” he stresses.
The researchers use an acid and an amine mixture to force the pyruvate to act as an electron donor rather than its usual role as an electron receiver (Figure 1).
Effectively mimicking how enzymes work, the amine binds to the pyruvate to make an intermediate molecule. The organic acid then covers up part of the intermediate molecule while leaving another part that can donate electrons free to react to form a new product.
Currently, the organic catalyst system only works when reacting pyruvate with a specific class of organic molecule called cyclic imines.
So, the researchers now are looking to develop a more-universal catalyst, i.e., one that can speed up reactions between pyruvate and a broad range of organic molecules.
The challenge here is to try to make the electron-donating intermediate stage of pyruvate react with other functional groups such as aldehydes and ketones. However, different catalysts create different intermediates, all with different properties. For example, the enamine intermediate created by the researchers’ new reaction only reacts with cyclic imines. Their hypothesis, currently being investigated, is that creation of other intermediates such as an enolate, if possible, would achieve a broader pyruvate reactivity.
In terms of cost, the researchers note that a palladium catalyst used in similar reactions is 25 times more expensive than their organic acid — which also is made from eco-friendly quinine.
In addition, they believe scale-up of the process for industrial use definitely is possible. However, the researchers caution that the current amine-to-acid-catalyst loading ratio of 1:2 probably would need to be optimized for better results at a larger scale.
Read More
Chemical Management
Article | July 13, 2021
Individual consumers expect tailored products and services. Color, size, quantity, payment method, and delivery channel options abound. The chemical sector is also now following this suit of action. The global chemicals supply chain has grown steadily for three decades. Chemical businesses are improving their supply chain capabilities to handle complexity and meet client demands. This includes implementing advanced data-driven and cloud-based technologies that enable faster, more flexible, and tailored customer interactions.
Areas of innovation for chemical companies
Living Segmentation
Living segmentation can help chemical businesses better serve clients and satisfy their expectations. This entails adapting supply chain capabilities to each customer's needs.
Asset-light Network
An asset-light network involves developing an ecosystem of partners to add capabilities and value to your supply chain beyond standard co-manufacturing, co-packing, and third-party or last-mile logistics providers. In addition, it should include technology partners that help chemical businesses innovate and be adaptable.
Data and Applied Intelligence
Improving speed, agility, and efficiency in global supply chains demands comprehensive visibility and the correct information. Data provides visibility and insights. The key to providing excellent customer service is gathering the appropriate data and using it strategically to get important insight. The industry generates a ton of data, which is excellent news.
In response to last year's supply chain delays, corporations are building supply chains with geographically spread shipping/supplier choices. Real-time visibility and enhanced analytics can be used to track delays by providing revised ETAs and analyzing downstream implications. Data-driven insights can alert organizations of a delay almost immediately and help them acquire raw materials from another supplier to reduce the domino impact downstream. Chemical businesses must rethink their supply chains to implement living segmentation, asset-light networks, data, and AI.
Read More
Chemical Management
Article | July 14, 2022
Downhole fluid build-up coupled with a drop in reservoir pressure can lead to the rapid decline of gas production rates, and can ultimately result in a well ceasing production. While there are many ways to deliquify a well to maximise production, chemical foamers can be incredibly effective and well worth considering. In this blog post, Kevin Lonie shares some of the benefits of using chemical foamers, and provides insights and advice around how best to use them… “Foamers are a much cheaper option than alternative solutions, such as mechanical lifts, and there is very little risk associated with their usage. If a foamer doesn’t work, it won’t make the well worse - so often we see clients giving them a go before opting for more expensive methods, in the hope that they produce the desired results. And we have seen their success over and over again.”
Read More
Chemical Technology
Article | July 20, 2022
Cybersecurity concerns must be considered in order for the chemical sector to succeed with digital commerce; simply listing your products on an online store and crossing your fingers won't cut it. It is crucial to pick a spouse who is aware of these hazards and has a strong defense in place. It is evident that the sector has massive potential for online sales, but selling chemicals online is different from selling common consumer goods online. Who your consumers are and how you gather and maintain data about them raise severe security and privacy problems.
Chemical company leaders have every right to be concerned about the privacy of their data, given that one cyber attack occurs every 11 seconds. However, they should still go online because there is too much business risk in not taking advantage of the digital opportunity.
Deloitte estimates that the chemical sector alone sold over $27 billion worth of goods online in 2020.
More than half (58%) of chemical purchasers reportedly stated that they would transfer providers if their demands, which include demands for a fantastic digital experience, were not delivered.
The objective is to limit risk and create a secure digital sales environment rather than dismissing e-commerce due to cybersecurity issues.
Setting up the appropriate IT infrastructure: Building for convenience and security is possible thanks to new IT technologies.
Emphasis on confirming identification: Always be aware of who you are dealing with, regardless of whether they came through a digital or physical means.
Offering simple (and safe) reorder alternatives to clients that have been verified.
It's ideal for business owners in the chemical sector who want to test selling online but are concerned about data collecting, security, and privacy for my company and customers.
Read More