Transfer of Toxic Liquid with Polypropylene Pump

February 27, 2020 | 14 views

Transfer of toxic liquids can be dangerous without the right equipment! The polypropylene pump in the video uses an SP-450V motor with variable speed. The speed is adjusted accordingly to avoid splashes and spillage of the liquid. NB: Always wear safety workwear when handling chemicals and toxic liquids.

Spotlight

Foseco

Foseco from last 75 years has been associated with the Metals Industry and is now acknowledged as a world leader in the supply of consumable products for use in the steel and foundry industry with a presence in 32 countries and major facilities in Germany, USA, UK, Brazil, China, Japan, South Korea and India. In April 2008, Foseco was acquired by Cooksons Group plc and is now a part of Vesuvius.

OTHER ARTICLES
CHEMICAL TECHNOLOGY

How Leading Chemical Companies Protect Customer Data Online

Article | July 20, 2022

Cybersecurity concerns must be considered in order for the chemical sector to succeed with digital commerce; simply listing your products on an online store and crossing your fingers won't cut it. It is crucial to pick a spouse who is aware of these hazards and has a strong defense in place. It is evident that the sector has massive potential for online sales, but selling chemicals online is different from selling common consumer goods online. Who your consumers are and how you gather and maintain data about them raise severe security and privacy problems. Chemical company leaders have every right to be concerned about the privacy of their data, given that one cyber attack occurs every 11 seconds. However, they should still go online because there is too much business risk in not taking advantage of the digital opportunity. Deloitte estimates that the chemical sector alone sold over $27 billion worth of goods online in 2020. More than half (58%) of chemical purchasers reportedly stated that they would transfer providers if their demands, which include demands for a fantastic digital experience, were not delivered. The objective is to limit risk and create a secure digital sales environment rather than dismissing e-commerce due to cybersecurity issues. Setting up the appropriate IT infrastructure: Building for convenience and security is possible thanks to new IT technologies. Emphasis on confirming identification: Always be aware of who you are dealing with, regardless of whether they came through a digital or physical means. Offering simple (and safe) reorder alternatives to clients that have been verified. It's ideal for business owners in the chemical sector who want to test selling online but are concerned about data collecting, security, and privacy for my company and customers.

Read More
CHEMICAL TECHNOLOGY

Future-Proofing the Chemical Industry with Digitalization

Article | June 6, 2022

Over the next five to seven years, the chemical sector will place a greater emphasis on sustainability, and digitization will play a significant part in this. Reducing resource use, pollution, energy consumption, and waste are some of its main applications. Additionally, it will increase demand for a circular economy supported by IoT, AI, and other digital technologies. Some of the systems now in place or being used in the sector include autonomous solutions that enable lower energy usage, dispatching systems for effective logistics and strategies for sustainable power and fuel consumption. Chemical players making the switch to digital platforms have a chance to triumph if they move swiftly and update their operational models in accordance with a few common success characteristics. In fact, according to our study, making the correct decisions can increase total earnings before interest, taxes, depreciation, and amortization by 3 percent or more (EBITDA). The Next Step of Operational Excellence The same level of transformation is available with digital technology for optimal performance, together with success-enabling measures. The same level of corporate participation and realignment will also be necessary for the effective implementation of digital technology. Finance and telecoms were early leaders in adopting digital technology faster than the chemical sector, which has just recently started to move in more significant numbers toward digitalization. A circular economy in the sector is also being enabled by the use and evaluation of digital technology. The "Right to Fix" movement is being driven by governments and legislators in Europe and the US, and small and medium-sized businesses in the industry are expected to invest in technology that makes it easier to repair electronic items with the least amount of waste. On a side note, by enabling the re-use of resources and products throughout the supply chain, digitalization with lean manufacturing (LM) would enable businesses to improve operational excellence and create value, thereby supporting the circular economy goal. Conclusion Given its extensive safety and regulatory requirements, the chemical sector has evolved slowly. However, as the global economy changes, some skills will become obsolete and others essential. The interconnectedness of people, processes, and technology, as well as the requirement for real-time insight at the levels closest to the action, are among the basic principles of Industry 4.0. These values have existed for some time and are an extension of our teams' current operational excellence initiatives. Digital transformation is not a technology endpoint but rather the following stage in the process and business evolution as the chemicals industry advances continuously.

Read More
CHEMICAL TECHNOLOGY

Key Trends in the Digital Transformation of the Chemical Industry

Article | August 8, 2022

The chemical business is intricate, with numerous sub-sectors dealing with various challenges. Thus, there are some differences in the sector's main areas of digitalization. For instance, while specialty chemicals with smaller batches but larger profit margins are concerned with improving quality, large factories are concentrated on accelerating throughput speed. To be able to react to quick and repeated changes in demand, supply, and working circumstances, however, every plant must optimize output, reduce waste, improve safety and sustainability, and become more nimble. Therefore, the Industrial Internet of Things (IIoT), artificial intelligence (AI), and cloud computing are expected to be the three most popular applications for digital transformation during the coming two years. Key Trends Production Optimization The first and most valuable use cases of digitalization in chemical plants center on production optimization through improved equipment performance, process automation, remote and predictive monitoring, and simplified maintenance. Chemical factories, which often provide basic chemicals for use as end products in other sectors, have a special responsibility to maintain consistently high product quality. However, doing so can be challenging given the significant variations in raw material supply and quality. In addition, as process engineers can change the mix on the fly in reaction to fluctuations in quality, feedstock, or ambient temperatures, better data and analytics enable finer and more frequent adjustments. Lowering Waste The main advantage of digitally transformed plants so far has been cost reduction. The price volatility of raw materials is a problem for the chemical production sector because customers naturally want constant low prices. Minimizing waste is critical since facilities must contend with rising energy costs. Analytics tools that monitor fluctuating raw material prices aid factories in negotiating the best deals with suppliers and preparing in advance for price spikes. The risk of oversupply is reduced since plants can prepare the proper quantities of various products thanks to more precise demand predictions. Sustainability, Compliance, and Safety The chemical industry is heavily regulated as a result of the quantity of hazardous chemicals and the number of end-use industries that rely on it. Businesses are adopting digital transformation to boost safety awareness, reduce emissions and dangerous flare incidents, and guarantee a transparent and accurate audit trail. Plants that quickly adopt digital solutions for remote monitoring, supply chain visibility, waste reduction, production optimization, raising their safety profile, and opening up new opportunities will profit from higher profits and increased revenue, whereas those that hesitate for too long risk failing in the long run.

Read More
CHEMICAL MANAGEMENT

The Future of Supply Chain Management for Chemical Companies

Article | July 8, 2022

Individual consumers expect tailored products and services. Color, size, quantity, payment method, and delivery channel options abound. The chemical sector is also now following this suit of action. The global chemicals supply chain has grown steadily for three decades. Chemical businesses are improving their supply chain capabilities to handle complexity and meet client demands. This includes implementing advanced data-driven and cloud-based technologies that enable faster, more flexible, and tailored customer interactions. Areas of innovation for chemical companies Living Segmentation Living segmentation can help chemical businesses better serve clients and satisfy their expectations. This entails adapting supply chain capabilities to each customer's needs. Asset-light Network An asset-light network involves developing an ecosystem of partners to add capabilities and value to your supply chain beyond standard co-manufacturing, co-packing, and third-party or last-mile logistics providers. In addition, it should include technology partners that help chemical businesses innovate and be adaptable. Data and Applied Intelligence Improving speed, agility, and efficiency in global supply chains demands comprehensive visibility and the correct information. Data provides visibility and insights. The key to providing excellent customer service is gathering the appropriate data and using it strategically to get important insight. The industry generates a ton of data, which is excellent news. In response to last year's supply chain delays, corporations are building supply chains with geographically spread shipping/supplier choices. Real-time visibility and enhanced analytics can be used to track delays by providing revised ETAs and analyzing downstream implications. Data-driven insights can alert organizations of a delay almost immediately and help them acquire raw materials from another supplier to reduce the domino impact downstream. Chemical businesses must rethink their supply chains to implement living segmentation, asset-light networks, data, and AI.

Read More

Spotlight

Foseco

Foseco from last 75 years has been associated with the Metals Industry and is now acknowledged as a world leader in the supply of consumable products for use in the steel and foundry industry with a presence in 32 countries and major facilities in Germany, USA, UK, Brazil, China, Japan, South Korea and India. In April 2008, Foseco was acquired by Cooksons Group plc and is now a part of Vesuvius.

Related News

NRDC and Partners Calls out EPA for Evaluation Process of Toxic Chemical Risks

NRDC, EPA | July 17, 2020

NRDC (the Natural Resources Defense Council) together with partners, today asked a federal court to review the Environmental Protection Agency’s woefully inadequate process for evaluating risks of the toxic chemical methylene chloride. A solvent used in paint strippers and other products, methylene chloride has already been linked to some 60 deaths, at least 4 of which occurred after the EPA refused to finalize a ban on its use in paint strippers. “This is the agency’s very first risk evaluation under the updated federal toxics law and it sets the stage for future limits on this deadly chemical,” said Selena Kyle, senior attorney and managing litigator for NRDC. “But the agency has underestimated the risks to people exposed to methylene chloride on the job, and all but ignored risks to people who live near facilities that release it into the air, water, and soil. When EPA moves forward to regulate the chemical, it must consider these risks.”

Read More

Research finds potentially toxic chemicals used in smartphones and TVs escaping into environment

CBC | December 17, 2019

An international research team is sounding the alarm about potentially harmful chemicals — used to manufacture screens for devices like smartphones and TVs — being found in homes and other buildings even when the devices aren't present. In a paper published this month in the Proceedings of the National Academy of Sciences, researchers found chemicals called liquid crystal monomers in household dust samples collected in China. That's problematic, because the chemicals are supposed to stay contained within the screens. "They're supposedly sealed in the screens when they're made, but obviously they do come out," said Prof. John Giesy, a Canada Research Chair in Environmental Toxicology at the University of Saskatchewan.

Read More

New material captures and converts toxic air pollutant into industrial chemical

EurekAlert | November 22, 2019

An international team of scientists, led by the University of Manchester, has developed a metal-organic framework, or MOF, material that provides a selective, fully reversible and repeatable capability to capture a toxic air pollutant, nitrogen dioxide, produced by combusting diesel and other fossil fuels. The material then requires only water and air to convert the captured gas into nitric acid for industrial use. The mechanism for the record-breaking gas uptake by the MOF, characterized by researchers using neutron scattering at the Department of Energy's Oak Ridge National Laboratory, could lead to air pollution control and remediation technologies that cost-effectively remove the pollutant from the air and convert it into nitric acid for use in producing fertilizer, rocket propellant, nylon and other products. As reported in Nature Chemistry, the material, denoted as MFM-520, can capture atmospheric nitrogen dioxide at ambient pressures and temperatures--even at low concentrations and during flow--in the presence of moisture, sulfur dioxide and carbon dioxide.

Read More

NRDC and Partners Calls out EPA for Evaluation Process of Toxic Chemical Risks

NRDC, EPA | July 17, 2020

NRDC (the Natural Resources Defense Council) together with partners, today asked a federal court to review the Environmental Protection Agency’s woefully inadequate process for evaluating risks of the toxic chemical methylene chloride. A solvent used in paint strippers and other products, methylene chloride has already been linked to some 60 deaths, at least 4 of which occurred after the EPA refused to finalize a ban on its use in paint strippers. “This is the agency’s very first risk evaluation under the updated federal toxics law and it sets the stage for future limits on this deadly chemical,” said Selena Kyle, senior attorney and managing litigator for NRDC. “But the agency has underestimated the risks to people exposed to methylene chloride on the job, and all but ignored risks to people who live near facilities that release it into the air, water, and soil. When EPA moves forward to regulate the chemical, it must consider these risks.”

Read More

Research finds potentially toxic chemicals used in smartphones and TVs escaping into environment

CBC | December 17, 2019

An international research team is sounding the alarm about potentially harmful chemicals — used to manufacture screens for devices like smartphones and TVs — being found in homes and other buildings even when the devices aren't present. In a paper published this month in the Proceedings of the National Academy of Sciences, researchers found chemicals called liquid crystal monomers in household dust samples collected in China. That's problematic, because the chemicals are supposed to stay contained within the screens. "They're supposedly sealed in the screens when they're made, but obviously they do come out," said Prof. John Giesy, a Canada Research Chair in Environmental Toxicology at the University of Saskatchewan.

Read More

New material captures and converts toxic air pollutant into industrial chemical

EurekAlert | November 22, 2019

An international team of scientists, led by the University of Manchester, has developed a metal-organic framework, or MOF, material that provides a selective, fully reversible and repeatable capability to capture a toxic air pollutant, nitrogen dioxide, produced by combusting diesel and other fossil fuels. The material then requires only water and air to convert the captured gas into nitric acid for industrial use. The mechanism for the record-breaking gas uptake by the MOF, characterized by researchers using neutron scattering at the Department of Energy's Oak Ridge National Laboratory, could lead to air pollution control and remediation technologies that cost-effectively remove the pollutant from the air and convert it into nitric acid for use in producing fertilizer, rocket propellant, nylon and other products. As reported in Nature Chemistry, the material, denoted as MFM-520, can capture atmospheric nitrogen dioxide at ambient pressures and temperatures--even at low concentrations and during flow--in the presence of moisture, sulfur dioxide and carbon dioxide.

Read More

Events