Chemical Technology
Article | July 20, 2022
BUYERS OF polypropylene (PP) and other polymers and petrochemicals have had an incredibly difficult pandemic.
Firstly, the converters and brand owners expected doom and gloom last March. At the time it seemed logical to expect a cratering of demand as the global economy pretty much imploded.
Just looking at forecasts for GDP, parallels were drawn with the Global Financial Crisis when collapses in growth led to a cratering of polymers demand. The US is a good example where PP demand declined by 12% in 2008 over 2007. Demand then fell by a further 5% in 2009 over 2008.But what we all missed was the complete dislocation of polymers and petrochemicals demand from GDP. As economies registered historic declines, consumption went up.
PP demand went through the roof, firstly for food packaging and hygiene applications.Then consumption for the durable goods made from PP also smashed through the rafters as we bought white goods (PP is used to make components of washing machines), consumer electronics (PP is used to make some electronic components) and carpets (PP fibres are used here).
Read More
Chemical Management
Article | July 14, 2022
When an oilfield’s reservoir pressure is depleted during primary recovery, additional oil can be recovered by recycling the produced water and injecting it back into the reservoir. Water management is critical for such water and water-alternating-gas (WAG) floods. In its Permian basin operations, Occidental recovers, recycles, and re-injects large volumes of water for its enhanced oil recovery (EOR) operations. With real-time monitoring of oil in water (OiW) delivering reliable and continuous data, Occidental identified a way to optimize the recovery process and is working with NOV to expand the use of OiW monitoring equipment.
Read More
Chemical Management
Article | July 8, 2022
Over the next five to seven years, the chemical sector will place a greater emphasis on sustainability, and digitization will play a significant part in this. Reducing resource use, pollution, energy consumption, and waste are some of its main applications. Additionally, it will increase demand for a circular economy supported by IoT, AI, and other digital technologies.
Some of the systems now in place or being used in the sector include autonomous solutions that enable lower energy usage, dispatching systems for effective logistics and strategies for sustainable power and fuel consumption.
Chemical players making the switch to digital platforms have a chance to triumph if they move swiftly and update their operational models in accordance with a few common success characteristics. In fact, according to our study, making the correct decisions can increase total earnings before interest, taxes, depreciation, and amortization by 3 percent or more (EBITDA).
The Next Step of Operational Excellence
The same level of transformation is available with digital technology for optimal performance, together with success-enabling measures. The same level of corporate participation and realignment will also be necessary for the effective implementation of digital technology.
Finance and telecoms were early leaders in adopting digital technology faster than the chemical sector, which has just recently started to move in more significant numbers toward digitalization.
A circular economy in the sector is also being enabled by the use and evaluation of digital technology. The "Right to Fix" movement is being driven by governments and legislators in Europe and the US, and small and medium-sized businesses in the industry are expected to invest in technology that makes it easier to repair electronic items with the least amount of waste.
On a side note, by enabling the re-use of resources and products throughout the supply chain, digitalization with lean manufacturing (LM) would enable businesses to improve operational excellence and create value, thereby supporting the circular economy goal.
Conclusion
Given its extensive safety and regulatory requirements, the chemical sector has evolved slowly. However, as the global economy changes, some skills will become obsolete and others essential.
The interconnectedness of people, processes, and technology, as well as the requirement for real-time insight at the levels closest to the action, are among the basic principles of Industry 4.0. These values have existed for some time and are an extension of our teams' current operational excellence initiatives.
Digital transformation is not a technology endpoint but rather the following stage in the process and business evolution as the chemicals industry advances continuously.
Read More
Chemical Technology
Article | August 2, 2022
From novel process technologies to sustainable plastics— the chemical industry is scaling up its digital initiatives. This has opened new doors for organizations to explore opportunities to increase efficiency and streamline the process.
Admittedly, the chemical industry has been a little slower in implementing digital transformation. But COVID-19 has vastly increased the momentum of digitization among chemical plants.
According to a KPMG survey, 96% of industry CEOs saw digital transformation accelerate in their organizations, with 48 percent saying it advanced by a few years. In addition, according to a recent Manufacturing Leadership Council (MLC) survey, 82% of respondents agreed that the pandemic had "created a new sense of urgency" in driving investment in new technologies and digitalization.
Digital transformation solutions offer tremendous potential in the chemical sector. It can play a significant role in driving more value. So let's dig deeper and look at key technologies in bringing digital transformation to the chemical industry.
Circular Economy
Chemical manufacturers cannot exist within their own four walls any longer. They recognize the importance of working with their customers and other businesses and organizations to conserve resources and protect the environment. Chemical companies may source raw materials from recyclers as part of a circular economy, which necessitates fool proof solutions to confirm their quality and availability. Circular economy consortiums may advocate for reducing environmental threats such as ocean plastics or exposure to hazardous chemicals, opening up new avenues for innovation.
Customers are constantly looking for new ways to reduce waste and protect their ecosystems. For example, farmers may benefit from solutions that can instantly analyze soil quality, weather, and crops to determine the best products and schedule for applying fertilizers, crop protectants, or new seeds. Using this data, they use only what they need, generate less waste, and maximize output.
Error-Proof Operations
Chemical firms are also embracing technology to achieve operational excellence. They've discovered the benefits of using machine learning andIoT technologies to automate standard back-end processes. Technologies such as these reduce the need for human intervention — and thus the possibility of human error. Blockchain technology can also significantly reduce counterfeit chemicals' use, which is especially important for chemical manufacturers who supply products to the pharmaceutical or agricultural industries. In addition, blockchain technology can enable track-and-trace processes that require less work and waste while protecting the enterprise's reputation.
Staying Sharp in the Dynamic Market
Staying agile in an uncertain M&A environment is a top priority for some businesses. For example, chemical firms must be able to quickly divest assets, adjust portfolios, and adapt operations in response to market changes. Technology can provide executives with the visibility into operations, shipments, and market conditions required to make critical decisions and remain agile.
Data Analytics
The chemical industry is leveraging cloud-based storage systems to store and share confidential data anytime and anywhere. Additionally, data analytics solutions can analyze all the data effectively to provide valuable insights to the industry. This will help you make meaningful decisions in real-time.
Read More