Chemical Technology
Article | July 20, 2022
MAY 2021 ///Vol 242 No. 5
FEATURES
Organic Oil Recovery improves productivity of existing reservoirs
A transitional technology producing excellent results in extracting hard-to-reach oil is attracting the attention of many large operators. Ancient, resident microbes are used to liberate large oil deposits in depleted reservoirs, thanks to science uncovered by studying the humble Australian koala.
Roger Findlay, Organic Oil Recovery
It began in almost outlandish fashion, with a scientist’s fascination with the complex digestive system of an Australian marsupial, the koala. Today, it has evolved into a green technology that is helping major producers around the world potentially reach billions of dollars of oil that they feared they could never access or bring to the surface.
As the pressure on the oil and gas industry continues to grow, to find new ways to operate with less impact on the environment, Organic Oil Recovery (OOR) is reducing the need for further exploration. Instead, it is helping producers focus on the reservoirs already in situ to extract even more precious resource—at very low cost—from deep below the ground or seas, across a myriad of jurisdictions and geographies.
Read More
Chemical Technology
Article | July 14, 2022
Recent discoveries in the Guyana-Suriname basin attest to estimates of 10+ Bbbl of oil resources and more than 30 Tcf of gas.1 Like many oil & gas successes, this is a story that begins with early exploration success onshore, followed by a long period of exploration disappointment in coastal to shelf regions offshore, eventually culminating in deepwater success.
Read More
Chemical Technology
Article | August 8, 2022
Petrochemical stocks plunged worldwide on 19 July ahead of the Q2 earnings season. The declines were consistent with those in economically sensitive sectors such as steel, copper, automotive and housing,” wrote my ICIS colleague, Joseph Chang, in this Insight article.
Read More
Chemical Technology
Article | July 14, 2022
Over the next five to seven years, the chemical sector will place a greater emphasis on sustainability, and digitization will play a significant part in this. Reducing resource use, pollution, energy consumption, and waste are some of its main applications. Additionally, it will increase demand for a circular economy supported by IoT, AI, and other digital technologies.
Some of the systems now in place or being used in the sector include autonomous solutions that enable lower energy usage, dispatching systems for effective logistics and strategies for sustainable power and fuel consumption.
Chemical players making the switch to digital platforms have a chance to triumph if they move swiftly and update their operational models in accordance with a few common success characteristics. In fact, according to our study, making the correct decisions can increase total earnings before interest, taxes, depreciation, and amortization by 3 percent or more (EBITDA).
The Next Step of Operational Excellence
The same level of transformation is available with digital technology for optimal performance, together with success-enabling measures. The same level of corporate participation and realignment will also be necessary for the effective implementation of digital technology.
Finance and telecoms were early leaders in adopting digital technology faster than the chemical sector, which has just recently started to move in more significant numbers toward digitalization.
A circular economy in the sector is also being enabled by the use and evaluation of digital technology. The "Right to Fix" movement is being driven by governments and legislators in Europe and the US, and small and medium-sized businesses in the industry are expected to invest in technology that makes it easier to repair electronic items with the least amount of waste.
On a side note, by enabling the re-use of resources and products throughout the supply chain, digitalization with lean manufacturing (LM) would enable businesses to improve operational excellence and create value, thereby supporting the circular economy goal.
Conclusion
Given its extensive safety and regulatory requirements, the chemical sector has evolved slowly. However, as the global economy changes, some skills will become obsolete and others essential.
The interconnectedness of people, processes, and technology, as well as the requirement for real-time insight at the levels closest to the action, are among the basic principles of Industry 4.0. These values have existed for some time and are an extension of our teams' current operational excellence initiatives.
Digital transformation is not a technology endpoint but rather the following stage in the process and business evolution as the chemicals industry advances continuously.
Read More