Chemical Management
Article | July 8, 2022
MAY 2021 ///Vol 242 No. 5
FEATURES
Developing pre-rig solutions that are greener, safer and more efficient
There is an increased focus in the oil and gas sector to look further afield to opportunities presented in deepwater locations. Because of this, finding cost-efficient solutions and overcoming the associated challenges that arise below 1,000 ft will be vital for the success of new activity.
Jostein Aleksandersen, Neodrill
There is an increased focus in the oil and gas sector to look further afield to opportunities presented in deepwater locations. Because of this, finding cost-efficient solutions and overcoming the associated challenges that arise below 1,000 ft will be vital for the success of new activity.
All those currently—and those considering—operating in deepwater fields will have an awareness of the general challenges that are presented at such depths. From considerations relating to vast increases in pressure, to the potential for increased drilling time and days spent offshore, there are several hurdles that follow when operating in what are often challenging well environments. In addition, suitable solutions also must support the industry drive to reduce emissions by offering a more carbon-efficient approach.
Read More
Chemical Technology
Article | July 20, 2022
The chemical industry is evolving. The marketing, purchasing, and selling of chemicals are being affected by forces in the market, with digitization unquestionably having the most significant impact. Many of the existing digitizing models have likely already been given some thought and then rejected.
Chemical businesses are currently conducting pilot projects or starting to gradually scale up their digital initiatives after moving past the proof-of-concept stage. Although this past year brought many difficulties, it also provided an opportunity to revise and re-evaluate foundations moving forward. The Great Reset, as the World Economic Forum has dubbed this time period, is illuminating how the chemical industry might leverage digital technologies to advance.
Whether prompted by governmental requirements or consumer desires, chemical businesses' net-zero ambitions will necessitate new expenditures throughout the whole chemical value chain. As a result, back-office costs must be as efficient as possible to free up money to pay for those investments while keeping a profit.
Consumer pull
The most essential requirements for the success of a new product are a solid understanding of customer needs and wants, the competitive climate, and the makeup of the market. The primary factors that influence the needs of the consumer are price, timing, and quality. Therefore, companies create ongoing procedures and plans with these three factors in mind to better serve client needs and grow their market share by regularly creating new products.
Technology pushes
The influence of digital technology is constantly growing. One of the foundational elements of 21st-century sources of growth is data-driven innovation. There are numerous items and procedures in the history of innovation that were the result of an accident or careful forethought. Vast volumes of data, or "big data," are being produced and used as a result of the convergence of numerous phenomena, including the growing migration of socio-economic activities on the Internet and the decline in the cost of data collecting, storage, and processing.
Large data sets are becoming an essential resource for the economy, supporting the development of new markets, procedures, and goods while also generating substantial competitive advantages. For example, a billion customers can now access broadband at a reasonable price because of the digital world's supporting infrastructure. In addition, cloud computing and the enormous amount of information processing equipment it needs are developing swiftly, and low-cost connected gadgets are being introduced into every industry.
Economic benefits
The financial gains that can be realized through digitization are genuine. The new digital technologies and businesses have seen an influx of cash, and the public markets are rewarding early adopters with record values. The effects of digitization are spreading swiftly throughout every business. Digitization is the changing of life and work as a result of new technologies, not only their acceptance. Much like earlier technologies, modern emerging technologies like the cloud and big data quickly become part of businesses' operations. Unknown to many, this is having a much more significant impact on the industry that makes these tools as well as on customers.
Digitalization that derives from and includes strategic business objectives can greatly benefit chemical firms. Cost savings of roughly 30 to 40 percent can already be made on average today. Additionally, in certain situations, digitalization aided in improving service quality and affected the bottom line by, for instance, enabling new business models. On average, platform-driven digitization projects pay off after 18 months.
Read More
Chemical Management
Article | July 22, 2021
The chemical business is intricate, with numerous sub-sectors dealing with various challenges. Thus, there are some differences in the sector's main areas of digitalization. For instance, while specialty chemicals with smaller batches but larger profit margins are concerned with improving quality, large factories are concentrated on accelerating throughput speed.
To be able to react to quick and repeated changes in demand, supply, and working circumstances, however, every plant must optimize output, reduce waste, improve safety and sustainability, and become more nimble. Therefore, the Industrial Internet of Things (IIoT), artificial intelligence (AI), and cloud computing are expected to be the three most popular applications for digital transformation during the coming two years.
Key Trends
Production Optimization
The first and most valuable use cases of digitalization in chemical plants center on production optimization through improved equipment performance, process automation, remote and predictive monitoring, and simplified maintenance.
Chemical factories, which often provide basic chemicals for use as end products in other sectors, have a special responsibility to maintain consistently high product quality. However, doing so can be challenging given the significant variations in raw material supply and quality. In addition, as process engineers can change the mix on the fly in reaction to fluctuations in quality, feedstock, or ambient temperatures, better data and analytics enable finer and more frequent adjustments.
Lowering Waste
The main advantage of digitally transformed plants so far has been cost reduction. The price volatility of raw materials is a problem for the chemical production sector because customers naturally want constant low prices. Minimizing waste is critical since facilities must contend with rising energy costs.
Analytics tools that monitor fluctuating raw material prices aid factories in negotiating the best deals with suppliers and preparing in advance for price spikes. The risk of oversupply is reduced since plants can prepare the proper quantities of various products thanks to more precise demand predictions.
Sustainability, Compliance, and Safety
The chemical industry is heavily regulated as a result of the quantity of hazardous chemicals and the number of end-use industries that rely on it. Businesses are adopting digital transformation to boost safety awareness, reduce emissions and dangerous flare incidents, and guarantee a transparent and accurate audit trail.
Plants that quickly adopt digital solutions for remote monitoring, supply chain visibility, waste reduction, production optimization, raising their safety profile, and opening up new opportunities will profit from higher profits and increased revenue, whereas those that hesitate for too long risk failing in the long run.
Read More
Chemical Technology
Article | August 8, 2022
Used to separate and analyze compounds into their various components— chromatography plays a crucial part not just in the food industry but in the realms of drug testing, forensics, and even quality control in our favourite alcoholic drinks as well.
Advanced Chromatography is an analytical technique introduced to the world by chromatography instrument companies to separate and analyze individual chemicals from complex compounds. Recent developments in the biotechnology and pharma industries have created a significant surge in the chromatography market.
Read on to find out five fascinating facts about the day-to-day applications of chromatography in various industries and why businesses are looking to invest more in OEM chromatography manufacturing.
Why are Industry-Decision Makers Adapting to Chromatography?
Liquid Chromatography; A Popular Choice in Drug Testing
Today, a lot of drug tests use liquid chromatography-mass spectrometry because it is easy to use, widely available, and gives quick results. LC and LC-MS can be done in almost any testing facility, which is different from other methods. It can be run by people with little training, so a testing facility can hire mostly technicians instead of highly trained scientists, who are harder to find. LC-MS is also very accurate, which means that there are fewer false positives.
With liquid chromatography, you can get results in about 10 to 30 minutes, which is very fast. This technology is used by many drug testing labs across the country. It is widely used and trusted for testing drug samples and many other things.
Businesses associated with the sports industry are leveraging chromatography to effectively and accurately test athletes for doping or performance-enhancing drugs.
Use of HPCL in Pharmaceutical Industries
Chromatography is used in the medical and pharmaceutical industries to create vaccines. In addition, chromatography can determine which antibodies best neutralize viruses and diseases.
Mapp Biopharmaceutical, Inc. used the chromatography technique to develop the experimental immunization Zmapp to counteract the deadly Ebola virus. And it is still being used today to fight the coronavirus.
The pharmaceutical industry has gained enormous success by exclusively using HPLC to obtain precise results during drug trials. The results can be used to analyze finished drug products and their ingredients quantitatively and qualitatively during manufacturing.
The Detector in Forensic Science
Chromatography methods are a well-established, powerful suite of methodologies in forensic science, from drug busts, murders, and robberies, to the identification of a plethora of chemical compounds that may be present in samples from terrorist incidents.
Forensics use gas chromatography to help solve crimes. It helps analyze blood and clothing samples, allowing forensic scientists to investigate who and what was present at a crime scene.
In particular instances, chromatography can even help forensic scientists pinpoint the exact whereabouts of the alleged perpetrator and victim before the crime happened. It’s an error-free process. Therefore, it is incredibly helpful in court.
Additionally, chromatography is extremely handy in arson investigations. Most fires have a virtual cocktail of different substances. Every compound and substance differs in size and weight. Chromatography helps break down these varying compounds and substances to help determine what exactly started the fire.
Liquid Chromatography in Food Industry
Liquid chromatography plays a vital role in the food industry nowadays. It absolves and permits the selective removal of a wide variety of flavor and non-flavor-active food ingredients.
The USDA, along with other countries, has prioritized rigorous testing of processed meat's contents. For example, in 2013, it was found that horsemeat was being sold as beef without anyone noticing. As a result, the food industry decided to change its analytical techniques.
Chromatography quickly became the best way to find out what was in processed meats. High-Performance Liquid Chromatography and mass spectrometry were used to ensure that meat labeled beef was actually beef. In addition, it could tell if horse meat was mixed in with the beef, which helped keep people safe.
Bio-Rad Fast Acid Analysis Column in Beverage Testing
Not just food, many beverage manufacturers also use chromatography to ensure that each bottle of their product is the same. But, again, consistent taste is the main priority. And knowing the exact content of each bottle is the most proactive way to measure things.
The Bio-Rad fast acid analysis column has been successfully used by many companies to quantitatively determine vitamin C in juices, fresh drinks, and powdered drinks.
Chromatography Market is Opening New Dimensions in Various Businesses
Undoubtedly, technological advancement has created a vigorous need for chromatography devices. According to Verified Market Research, growing at a CAGR of 3.4% from 2020 to 2027, the chromatography market is projected to reach USD 4.73 billion by 2027.
The chromatography instrumentation market is currently witnessing huge advancements in the design of columns. This is raising the demand for development of better analytical reagents and resins. Increasing collaborations among the existing players, specifically in the Asian market is another propelling factor for this market. Additionally, emergence of green chromatography, increasing usage of chromatography instruments for monoclonal antibody purification, and usage of nanomaterial in chromatography are also fuelling the growth of this market. Plus, increased government funding in research and development activities is further driving the market growth.
With various pharmaceutical and biotechnology companies, chemical, food and beverage, and other industries contributing to its market growth, one thing is for sure— the increase in the chromatography system market is here to stay.
Read More